

An Artificial Coevolutionary Framework for Adversarial Al

Jamal Toutouh toutouh@mit.edu

ALFA http://groups.csail.mit.edu/ALFA unamay@csail.mit.edu

ALFA Group 2018-2019

Una-May O'Reilly

Erik Hemberg

Abdullah Al-Dujaili

Jamal Toutouh

Nicole Hoffman

Shashank Srikant

Miguel Paredes

Research Assoc. **Edilberto Amorim**

Jonathan Rubin

Milka Piszczek

Michal Shlapentokh-Rothman

Li Wang

Jonathan Kelly

Ayesha Bajwa

Andrew Zhang

Linda Zhang

Grad

Saeyoung Rho (TPP)

Agenda

- Adversarial Engagements and Arms Races
- Network Security Arms Races
 - RIVALS framework
 - » RIVALS: Robustness vs Denial
 - » AVAIL: Isolation vs Contagion
 - » DARK Horse and ADHD: Deception vs reconnaissance
 - » Acknowledgments:
 - Funding
 - Member companies supporting Cybersecurity@CSAIL
 - DARPA XD3
 - MIT Lincoln Labs
 - Work
 - Members of the ALFA group and collaborators

RIVALS

RIVALS helps the defense **anticipate** the attack strategies given a defensive configuration (and mission)

RIVALS helps the defense consider arms races and Design effective courses of action for the network to be resilient

Advanced Persistent Threat Kill Chain

Deceptive Defense With Honeypots

Achleitner et al.

CONFLICTING OBJECTIVES

MEASUREMENTS

d: time for defense to detect a scan (sec.)

t: time to run the scan (sec.)

n: number of scan detections by defender

h/*H*: ratio of real nodes that were discovered to total real nodes.

Evaluate using Mininet

Adversarial Behaviors

Defensive Learning

Static Attack – Optimized Defense

<u>Hypothesis</u>: Good defense has more honeypots, subnets and real hosts with even distribution <u>Results:</u>

- More difficult to detect smaller NMAP batch sizes
 - Fitness function rewards discovering more real host less than the penalty of being detected: smaller scans do better
- Defense against an attacker that scans with local preference is the most difficult
- Expected real behavior of attackers is to start scan their local subnet

Possible recommendation: create subnets for DHCP leases where real hosts are in a different subnet

Visit Order	Batch Size	Num. IPs	N Real Nodes	Real Node Dist	Subnets	Min-Max HP	Nodes Disc.	Detected Scans	1 st Detection(s)	HPs
random	100	500	17	crowding	6	6-19	17	19	18.89	98
local	100	500	17	crowding	4	10-18	17	25	20.47	66
seqential	100	500	20	random	6	6-20	9	26	18.72	77
local-seq.	100	500	19	crowding	6	9-12	19	24	16.66	74
random	100	400	17	crowding	6	8-18	17	21	18.50	104
local	100	400	20	crowding	6	6-16	20	18	30.84	77
seqential	100	400	14	even	6	8-20	3	24	16.59	107
local-seq.	100	400	20	crowding	6	10-15	17	18	27.11	106
random	5	400	19	crowding	6	7-18	9	9	34.62	96
local	5	400	18	random	5	8-13	4	10	32.60	77
seqential	5	400	11	crowding	5	3-18	3	8	42.55	66
local-seq.	5	400	15	even	6	4-17	3	4	59.04	78
random	5	200	13	random	6	4-16	6	7	28.61	60
local	5	200	19	crowding	5	5-18	11	8	30.53	85
seqential	5	200	11	random	5	8-20	2	7	46.64	78
local-seq.	5	200	17	crowding	6	1-20	9	6	18.40	42
random	10	200	15	random	5	7-19	7	5	34.63	61
local	10	200	13	even	4	6-14	4	8	34.57	37
segential	10	200	17	even	6	8-20	4	12	14.37	87
local-seq.	10	200	15	crowding	5	7-13	11	8	26.45	60

Attack Learning

Static Defense – Optimized Attack

Results:

- Difficult to attack many honeypots and subnets.

- Easier with crowded distribution of real hosts, large reward when that subnet is scanned (similar for defender when avoiding) Points to adopting high risk- and high reward tactic

N Real Nodes	Real Node Dist	Subnets	Min-Max HP	Visit Order	Batch Size	Num. IPs	Nodes Disc.	Detected Scans	1^{st} Detection(s)	HPs
20	even	4	1-10	local	25	300	8	11	22.62	26
20	crowding	4	1-10	seqential	5	400	12	2	42.74	14
20	random	4	1-10	local	10	300	4	3	26.61	19
20	even	4	10-20	local	25	200	5	19	22.54	86
20	crowding	4	10-20	seqential	50	300	20	19	16.47	73
20	random	4	10-20	seqential	10	400	8	12	22.43	76
20	even	10	1-10	seqential	5	400	3	2	24.52	54
20	crowding	10	1-10	segential	50	400	20	11	20.50	68
20	random	10	1-10	local	5	200	2	1	85.35	54
20	even	10	10-20	local	5	200	1	9	40.72	185
20	crowding	10	10-20	seqential	50	300	20	22	23.06	214
20	random	10	10-20	local	5	200	5	9	40.64	170
20	even	10	40-80	seqential	50	200	2	4	22.13	983
20	crowding	10	40-80	seqential	50	300	11	18	18.64	683
20	random	10	40-80	seqential	5	200	2	12	30.84	998
50	even	10	1-10	local-seq.	25	200	9	13	30.58	36
50	crowding	10	1-10	seqential	5	300	15	2	68.95	52
50	random	10	1-10	seqential	5	400	3	2	97.45	48
50	even	10	10-20	seqential	25	200	7	16	20.42	205
50	crowding	10	10-20	local-seq.	5	400	20	7	30.76	231
50	random	10	10-20	seqential	50	200	2	14	22.63	183
20	even	20	10-20	seqential	25	200	2	17	16.67	379
20	crowding	20	10-20	local	5	300	12	4	24.81	347
20	random	20	10-20	local-seq.	25	300	1	18	16.58	389

Coevolutionary Arms Race

Coevolution of Scanning and Deception

Evolved for defense & attack

ANYSCALE LEARNING FOR ALL

From Biological Coevolution Towards Adversarial AI Via Artificial Coevolution

- Biological arms races can provide adaptation
 - Can coevolution help to improve robustness in other adversarial settings?
 - Multiple comparisons can aid robustness and improve diversity
 - Help to anticipate
 - Replay the arms-race

Adversarial AI Framework Concept

DDoS Network Defense

Server Based Network Peer to Peer Network

RIVALS: Network Routing Problem

FITNESS mission disruption attacks in number and duratior

 $f_a^L = \frac{1 - mission_success}{(n_attacks \cdot total_duration) + n_attacks}$

FITNESS mission completion time and hops

 $f_d^L = \frac{mission_success}{overall_time \cdot n_hops}$

Defender Objective: maximize Attacker Objective: maximize

ATTACKER ACTIONS node, start time, end time complete loss of node

DEFENDER ACTIONS link flooding shortest path CHORD

ALFA Sim of P2P

Network Segmentation

The Definitive Guide to Micro-Segmentation, John Friedman, CyberEdge Group

AVAIL: Enclaves vs Contagion

FITNESS mission delay budget remaining

FITNESS mission delay budget remaining

OBJECTIVE: minmax

ATTACKER ACTIONS set strength and duration of attack for each enclave

DEFENDER ACTIONS

set tap sensitivity and size for each enclave

Evolve Defense

Μ

ANYSCALE LEARNING FOR ALL

Compendium Analysis

Attack Campaign Performance Comparison Different metrics and Ranking Schemes

Attack Campaign Similarity

(a) Attacker pairwise distance. Black arrow shows attacker selected by AF, PF, and CS ranking scheme. The pink arrow shows the attacker selected by the MF ranking scheme.

(b) Defender pairwise distance. Black arrow shows defender selected by all ranking schemes.

Summary & Future Work

- Adversarial Engagements and Arms Races
- Network Security Arms Races
 - RIVALS Adversarial AI framework
 - » RIVALS: Robustness vs Denial
 - » AVAIL: Isolation vs Contagion
 - **»** DARK Horse and ADHD: Deception vs reconnaissance
- Future
 - Validate, refine, and extend use cases

