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Generative Modeling

A current popular method to learn generative models is to use Generative 
Adversarial Networks 

We have data samples that are drawn from a distribution

Can we learn a generative model that captures that distribution so we can 
generate new data samples?



Generative Adversarial Network

Discriminator (v)
FAKE or REAL

REAL sample data

Noise

Generator (u)
Generate FAKE 
sample data

Loss based on some function

Generative Adversarial Networks (GANs) create generative and discriminative models from data with an 
adversarial system

Is v 
correct?

FAKE/REAL



GAN Pathologies

Generator 2

Mode collapse

Generator 1

Difficult to train due to pathologies, e.g. mode and discriminator collapse



Biological Arms Races

• Biological arms races can generate mimicry
• Can coevolutionary algorithms help to improve robustness in 

GANs?
 Our prior work solving GAN pathologies with Competitive 

Coevolution: Lipizzaner
 ES GAN training on a theoretical GAN problem [Al-Dujaili, et al, 

2018]
 SGD GAN training with one loss function within a spatial 

separated evolving population [Schmiedelechner, et al, 2018]
 E-GAN [Wang et al, 2018],  3 generator population, 3 loss functions, 

only 1 discriminator
 Question: Will injecting loss function diversity into a spatially separated population 

improve generator performance?



Mustangs

A distributed, coevolutionary 
framework to 
train GANs with gradient-
based optimizers
 Fast convergence due to 

gradient-based steps
 Robustness due to coevolution
 Improved convergence due to 

hyperparameter evolution
 Diverse solutions due to 

mixture evolution and multiple 
loss functions

 Scalability due to spatial 
distribution topology



Competitive Coevolution
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Evolve generator mixture weights 
based on 

Frechet Inception Distance (FID)
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Mustang – Spatial separation 
and generator mixtures
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Mini-batch training with SGD
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Mustang – GAN training with 
SGD and different loss functions

Genome: learning rate, 
weights and bias



Loss Functions

HEU
MSE
BCE



Experiments
Evaluated methods (9h of compute):
 GAN-BCE: BCE loss function, 1 generator, 1 discriminator
 E-GAN: 3 loss functions, 3 generators, 1 discriminator
 Lip-BCE: BCE loss function, 3x3 grid
 Lip-MSE: MSE loss function, 3x3 grid
 Lip-HEU: HEU loss function, 3x3 grid
 Mustangs: 3 loss functions, 3x3 grid

MNIST CelebA

Mustang: Mixture of generators from a spatially separated evolutionary GAN 
training with SGD and multiple loss functions



MNIST Results

Population improves FID score

More training epochs does not
 guarantee improved FID



Generator output diversity for MNIST

Mode collapse GAN-BCE, TVD: 0.51 E-GAN, TVD: 0.53 Lip-MSE, TVD: 0.37

Mustangs, TVD: 0.18

Lip-BCE, TVD: 0.17

Lip-HEU, TVD: 0.12 Spatial separation improves generator output diversity



Results CelebA

Mustangs Lip-BCE

Choosing from multiple loss functions does not degrade performance



Summary
• Mustang: Evolves a mixture of 

generators by a spatially separated 
evolutionary GAN training with 
stochastic gradient descent and 
multiple loss functions

• Empirically showed that GAN training 
can be improved by boosting diversity

• Enhanced an existing spatial 
evolutionary GAN training framework 
by it choosing one of three loss 
functions

• Released an open source, distributed 
Python framework with Pytorch that 
use Docker
• https://github.com/mustang-gan

• Future work to investigate scaling, 
larger populations, diversity and more 
problems
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