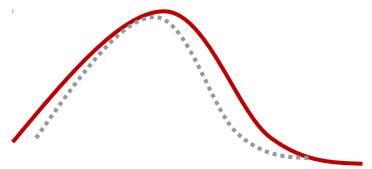
Spatial Evolutionary Generative Adversarial Networks

alfagroup.csail.mit.edu

Generative Modeling

We have data samples that are drawn from a distribution

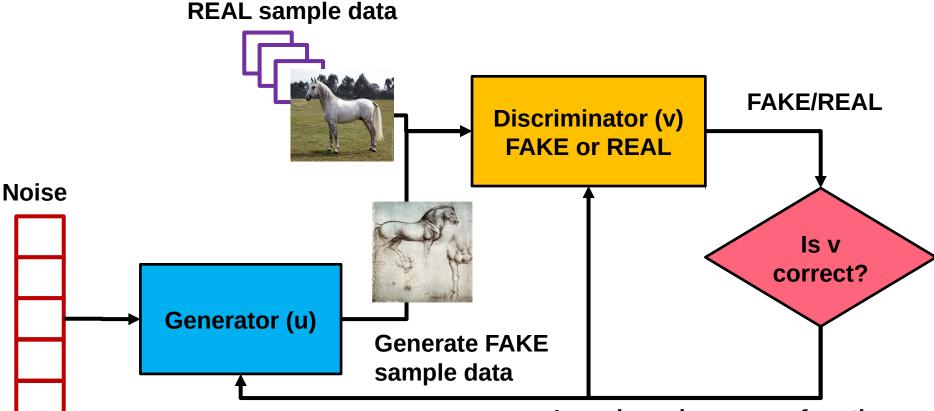
Can we learn a generative model that captures that distribution so we can generate new data samples?



A current popular method to learn generative models is to use Generative Adversarial Networks

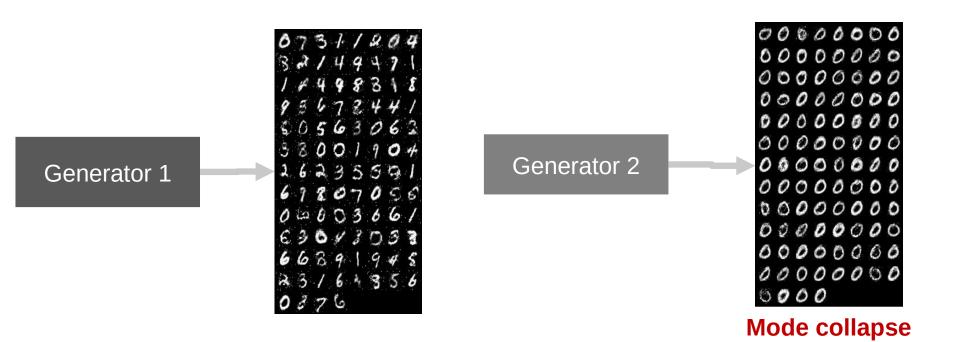
Generative Adversarial Network

Generative Adversarial Networks (GANs) create generative and discriminative models from data with an adversarial system



Loss based on some function

GAN Pathologies



Difficult to train due to pathologies, e.g. mode and discriminator collapse

Biological Arms Races

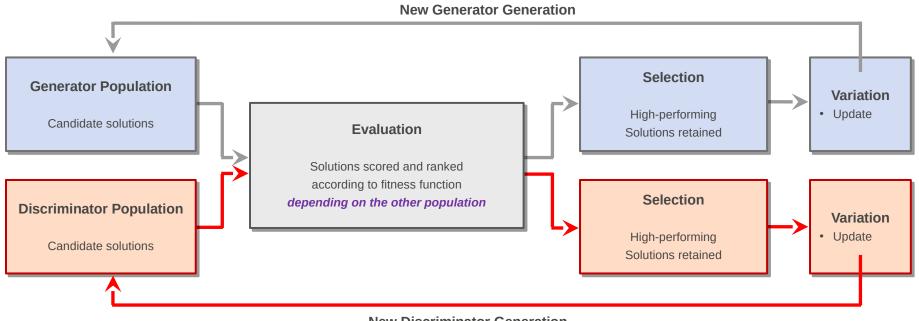
- Biological arms races can generate mimicry
- Can coevolutionary algorithms help to improve robustness in GANs?
 - Our prior work solving GAN pathologies with Competitive Coevolution: Lipizzaner
 - ES GAN training on a theoretical GAN problem [Al-Dujaili, et al, 2018]
 - SGD GAN training with one loss function within a spatial separated evolving population [Schmiedelechner, et al, 2018]
 - E-GAN [Wang et al, 2018], 3 generator population, 3 loss functions, only 1 discriminator

Mustangs

A distributed, coevolutionary framework to train GANs with gradientbased optimizers

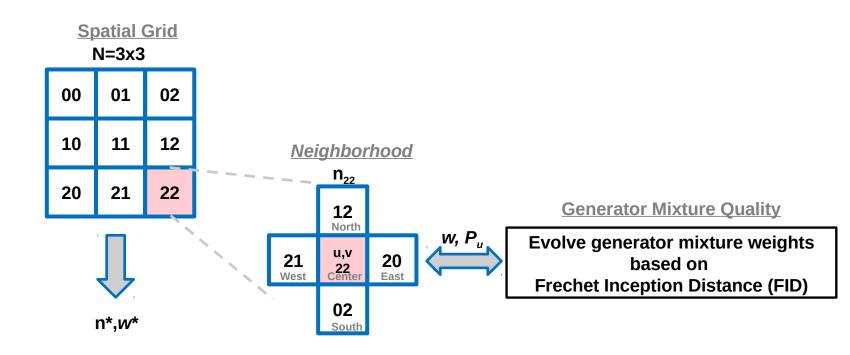
- <u>Fast convergence</u> due to gradient-based steps
- <u>Robustness</u> due to coevolution
- <u>Improved convergence</u> due to hyperparameter evolution
- <u>Diverse solutions</u> due to mixture evolution and multiple loss functions
- <u>Scalability</u> due to spatial distribution topology

Competitive Coevolution

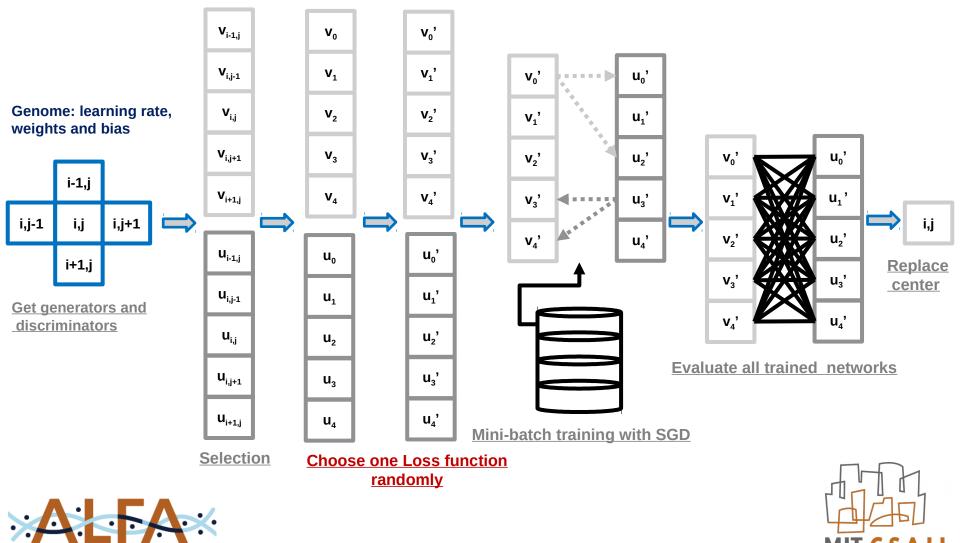


New Discriminator Generation

Mustang – Spatial separation and generator mixtures

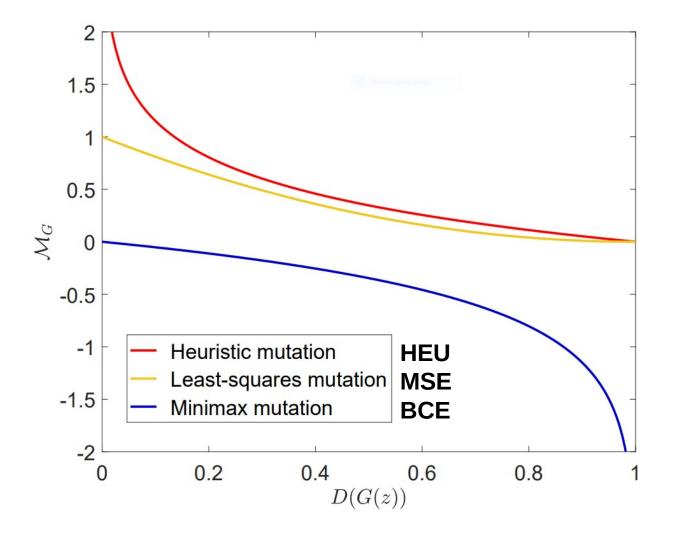


Mustang – GAN training with SGD and different loss functions



ANYSCALE LEARNING FOR ALL

Loss Functions

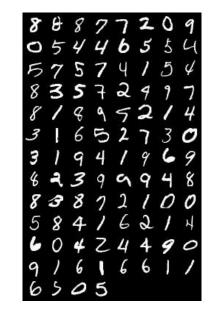


Experiments

Evaluated methods (9h of compute):

- GAN-BCE: BCE loss function, 1 generator, 1 discriminator
- E-GAN: 3 loss functions, 3 generators, 1 discriminator
- Lip-BCE: BCE loss function, 3x3 grid
- Lip-MSE: MSE loss function, 3x3 grid
- Lip-HEU: HEU loss function, 3x3 grid
- Mustangs: 3 loss functions, 3x3 grid

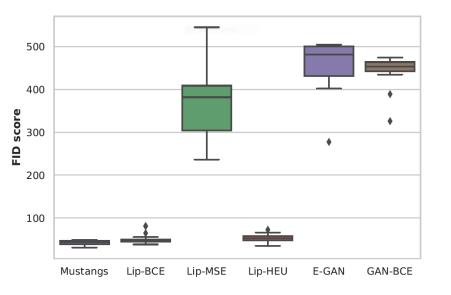
MNIST



CelebA

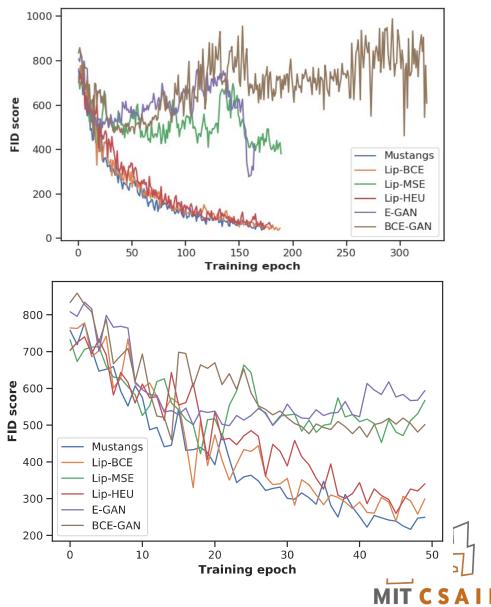
Mustang: Mixture of generators from a spatially separated evolutionary GAN training with SGD and multiple loss functions

MNIST Results

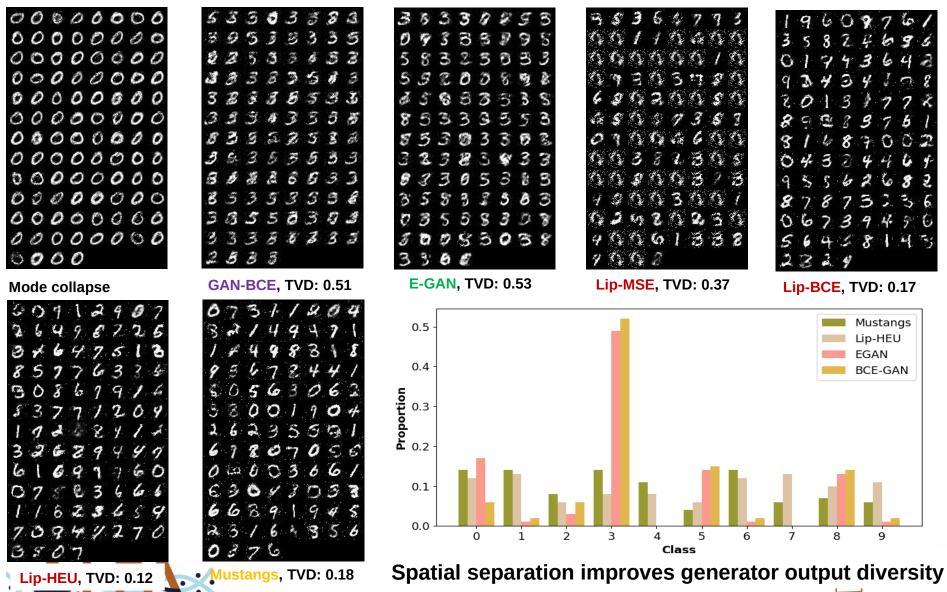


Population improves FID score

More training epochs does not guarantee improved FID



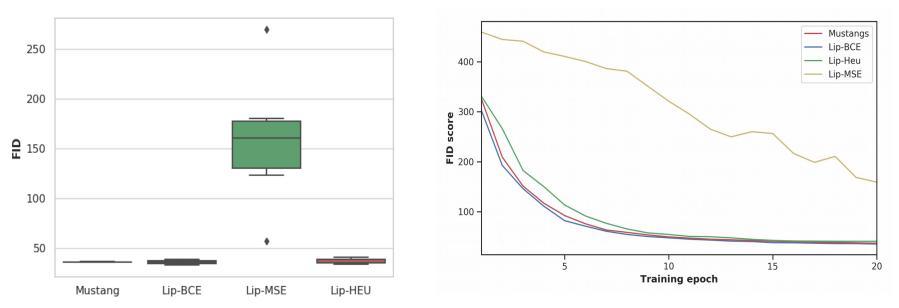
Generator output diversity for MNIST



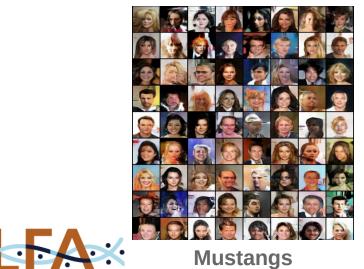
ANYSCALE LEARNING FOR ALL

MIT C S A I L

Results CelebA



Choosing from multiple loss functions does not degrade performance



ANYSCALE LEARNING FOR ALL

Lip-BCE

Summary

- Mustang: Evolves a mixture of generators by a spatially separated evolutionary GAN training with stochastic gradient descent and multiple loss functions
- Empirically showed that GAN training can be improved by boosting diversity
- Enhanced an existing spatial evolutionary GAN training framework by it choosing one of three loss functions
- Released an open source, distributed Python framework with Pytorch that use Docker
 - https://github.com/mustang-gan
- Future work to investigate scaling, larger populations, diversity and more problems

