

Massachusetts Institute of Technology

1

Spatial Coevolutionary Deep Neural Networks Training

JAMAL TOUTOUH TOUTOUH@MIT.EDU

28-May-19

SPATIAL COEVOLUTIONARY DEEP NEURAL NETWORKS TRAINING JAMAL TOUTOUH

http://groups.csail.mit.edu/ALFA unamay@csail.mit.edu

28-May-19

SPATIAL COEVOLUTIONARY DEEP NEURAL NETWORKS TRAINING

JAMAL TOUTOUH

ANYSCALE LEARNING FOR ALL

PhD

MEng

Una-May O'Reilly

Erik Hemberg

Abdullah Al-Dujaili

Jamal Toutouh

UROP

Michal Shlapentokh-Rothman

Saeyoung Rho (TPP)

Shashank Srikant

Li Wang

Jonathan Kelly

Research Assoc.

Ayesha Bajwa

Edilberto Amorim

Andrew Zhang

Linda Zhang

Nicole Hoffman

28-May-19

JAMAL TOUTOUH

Outline

- 1. Motivation
- 2. Generative Adversarial Networks
- 3. Coevolutionary System Design
- 4. Experimental Analysis
- 5. Summary

Generating Data

Figure 7: Generated samples

5

Genetic Programming Theory & Practice XVI

JAMAL TOUTOUH

Generative Models

Generative models map from a latent input space to a specific output distribution, e.g. certain images

Generative Adversarial Networks (GANs) are **unsupervised learning** algorithms and do not rely on direct mappings from input data to a latent space

- The generative model never sees the input data
- Training is only done by receiving adversarial feedback

Discriminative Models

Discriminative models classify between real and fake inputs

GANs create discriminative models from <u>unlabeled</u> data

- Image Classification
- Malware Detection

•••

Which cat is real?

Image reparation

Music generation

Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet

Image edition

output

outout input

8

28-May-19

Genetic Programming Theory & Practice XVI

JAMAL TOUTOUH

Generative Adversarial Networks

SPATIAL COEVOLUTIONARY DEEP NEURAL NETWORKS TRAINING

JAMAL TOUTOUH

Mode Collapse

GAN Pathologies

Non-convergence: the model parameters oscillate, destabilize and never converge

Mode collapse: the generator collapses which produces limited varieties of samples

	-	•	•			
		Ci 401	51 451		Stee 25h	
Step 0	Step 5k	Step 10k	Step 15k	Step 20k	Step 25k	Target

Diminished gradient: the discriminator gets too successful that the generator gradient vanishes and learns nothing

Focusing on different modes

Relation between GANs and Coev

Both are Minimax Problems

(z) sample from latent space(x) sample from real data

The **generator's** objective is to minimize D(G(z))

The discriminator's objective is to maximize D(G(z)), while minimizing D(x)

Relation between GANs and Coev

Nature inspired coevolution

Biological arms races can provide adaptation
Nature displays multiple adversaries and robustness

Can coevolution help to improve robustness in other adversarial settings?

- Multiple comparisons can aid **robustness**
- Multiple variations based on quality measurements improve diversity

Combining the Advantages of both Techniques

A distributed, coevolutionary framework to train GANs with gradient-based optimizers

- Fast convergence due to gradient-based steps
- <u>Robustness</u> due to coevolution
- Improved convergence due to hyperparameter evolution
- <u>Diverse solutions</u> due to mixture evolution
- <u>Scalability</u> due to spatial distribution topology

General Idea

New Generator Generation

SPATIAL COEVOLUTIONARY DEEP NEURAL NETWORKS TRAINING

JAMAL TOUTOUH

Loss Based Diversity

Mustangs randomly picks a loss function with different minimization objectives to improve the diversity

- Minmax loss
- Least-square loss
- Heuristic loss

Experiments

Evaluating Mustangs against other methods that provides diversity (population or loss based)

- E-GAN
- Lip-BCE
- Lip-MSE
- Lip-Heu
- GAN-BCE

MNIST

CelebA

CelebA

Experiments: MNIST

FID score: The lower, the better

Experimental Results: MNIST

Generator Output Diversity

Experimental Results: CelebA

FID score: The lower, the better

Mustangs

JAMAL TOUTOUH

Summary

- We have empirically showed that GAN training can be improved by boosting **diversity** (preventing critical GAN pathologies)
- We enhanced an existing spatial evolutionary GAN training framework that promoted genomic diversity by probabilistically choosing one of three loss functions
- Work in progress imply scaling works well
- https://github.com/mustang-gan

Comments?

JAMAL TOUTOUH TOUTOUH@MIT.EDU

22

28-May-19

SPATIAL COEVOLUTIONARY DEEP NEURAL NETWORKS TRAINING JAMAL TOUTOUH