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Motivation
Generative Models

Generative models map from a latent input space to a 

specific output distribution, e.g. certain images

Generative Adversarial Networks (GANs) are unsupervised 

learning algorithms and do not rely on direct mappings from 

input data to a latent space

◦ The generative model never sees the input data

◦ Training is only done by receiving adversarial feedback
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Motivation
Discriminative Models

Discriminative models classify between 

real and fake inputs

GANs create discriminative models 

from unlabeled data
◦ Image Classification

◦ Malware Detection

◦ …

Which cat is real?
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Motivation
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Img-to-img translation

Image edition

Music generationImage reparation

Image generation
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Generative Adversarial Networks
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Mode Collapse
GAN Pathologies

Non-convergence: the model parameters oscillate, 
destabilize and never converge

Mode collapse: the generator collapses which 
produces limited varieties of samples

Diminished gradient: the discriminator gets too 
successful that the generator gradient vanishes and 
learns nothing

Focusing on different modes
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Relation between GANs and Coev

Both are Minimax Problems

𝑧 sample from latent space

(𝑥) sample from real data

The generator’s objective is to 
minimize 𝑫(𝑮 𝒛 )

The discriminator’s objective is to 

maximize 𝑫(𝑮 𝒛 ), 
while minimizing 𝑫(𝒙)
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Relation between GANs and Coev
Nature inspired coevolution

Biological arms races can provide adaptation
◦ Nature displays multiple adversaries and robustness

Can coevolution help to improve robustness in other 

adversarial settings?
◦ Multiple comparisons can aid robustness

◦ Multiple variations based on quality measurements improve 

diversity
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Mustangs: Gradient-based Coevolution
Combining the Advantages of both Techniques

A distributed, coevolutionary framework to train GANs 

with gradient-based optimizers

◦ Fast convergence due to gradient-based steps

◦ Robustness due to coevolution

◦ Improved convergence due to hyperparameter evolution

◦ Diverse solutions due to mixture evolution

◦ Scalability due to spatial distribution topology
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Mustangs: Gradient-based Coevolution
General Idea

Discriminator Population

Candidate solutions

Selection

High-performing

Solutions retained

Variation

• Update

Variation

• Update

New Discriminator Generation

New Generator Generation

Evaluation

Solutions scored and ranked

according to fitness function

depending on the other population

Generator Population

Candidate solutions

Selection

High-performing

Solutions retained
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Mustangs: Gradient-based Coevolution
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ωa=0.43

ωb=0.57
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Mustangs: Gradient-based Coevolution
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Loss Based Diversity

Mustangs randomly picks a loss function with different 

minimization objectives to improve the diversity

◦ Minmax loss 

◦ Least-square loss

◦ Heuristic loss
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Experiments
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Evaluating Mustangs against other methods that 

provides diversity (population or loss based)

◦ E-GAN

◦ Lip-BCE

◦ Lip-MSE

◦ Lip-Heu

◦ GAN-BCE

MNIST CelebA
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Experiments: MNIST
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CelebA

FID score: The lower, the better
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Experimental Results: MNIST
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Generator Output Diversity

Lip-BCE E-GANMode collapse Mustangs
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Experimental Results: CelebA
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FID score: The lower, the better

Mustangs

Lip-BCE
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Summary
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◦ We have empirically showed that GAN training can be 

improved by boosting diversity (preventing critical GAN 

pathologies) 

◦ We enhanced an existing spatial evolutionary GAN training 

framework that promoted genomic diversity by 

probabilistically choosing one of three loss functions

◦ Work in progress imply scaling works well

◦ https://github.com/mustang-gan
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Comments?

JAMAL TOUTOUH
TOUTOUH@MI T .EDU
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