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Abstract

Municipal solid waste management is a major challenge for nowadays urban societies, because
it accounts for a large proportion of public budget and, when mishandled, it can lead to environ-
mental and social problems. This work focuses on the problem of locating waste bins in an urban
area, which is considered to have a strong influence in the overall efficiency of the reverse logis-
tic chain. This article contributes with an exact multiobjective approach to solve the waste bin
location in which the optimization criteria that are considered are: the accessibility to the system
(as quality of service measure), the investment cost, and the required frequency of waste removal
from the bins (as a proxy of the posterior routing costs). In this approach, different methods to
obtain the objectives ideal and nadir values over the Pareto front are proposed and compared.
Then, a family of heuristic methods based on the PageRank algorithm is proposed which aims
to optimize the accessibility to the system, the amount of collected waste and the installation
cost. The experimental evaluation was performed on real-world scenarios of the cities of Monte-
video, Uruguay, and Bahı́a Blanca, Argentina. The obtained results show the competitiveness of
the proposed approaches for constructing a set of candidate solutions that considers the different
trade-offs between the optimization criteria.
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1. Introduction

In the last years, the concept of smart cities has emerged to represent the application of
decision support systems to improve the efficiency of public services in urban agglomerations.
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Harrison et al. [31] recognize a city to be “smart” if it is instrumented, i.e., uses real-time real-
world data, interconnected, i.e., integrates the gathered data and communicates it among various
city services, and intelligent, i.e., includes modeling, optimization, and visualization in the opera-
tional decision making process. Municipal Solid Waste (MSW) management is a promising area
for applying intelligent smart cities characteristics to improve the decision making process [13],
not only because it represents one of the major expenses in the budget of local governments but
also because, when mishandled, is associated with severe social and environmental impacts [33].

Among the several decisions that a MSW system involves, it is the design of the waste col-
lection network, which is the entry point to the system. This problem involves finding the best
locations for community waste bins, that are arranged in special places known as Garbage Accu-
mulation Points (GAPs), in an urban area while optimizing some relevant criteria that is usually
related to the cost of the system, to the Quality of Service (QoS) provided to the citizens or to
both of them in a multiobjective fashion. The number of GAPs, their distribution in the field,
the type and capacity of the bins used in each point, and the frequency of waste removal from
these bins are major conditioning factors of the overall efficiency of the MSW system. Not only
GAPs location and configuration strongly influence the operational routing cost of waste col-
lection from bins to the disposal sites, but also have an impact on more strategic levels of this
reverse logistic chain, e.g., the designed capacity of intermediate and processing facilities [9].

Besides its relevance, locating GAPs is not a trivial problem. Firstly, because in terms of
computational complexity, the GAP location problem is an extension of the Capacitated Facility
Location Problem (CFLP), which was proven to be NP-hard [10] (i.e., at least as hard as problems
for which no efficient algorithms, that executes in polynomial time with respect to the size of the
problem, have been devised. This class characterizes those problems that are difficult to solve
computationally). Secondly, because of the conflicting goals which are involved since waste
bins are considered semi-obnoxious facilities [60]. On the one hand, citizens that live near to the
bins can suffer different environmental costs, such as noise pollution, bad smell, visual pollution,
and traffic congestion from collection vehicles [22]. Moreover, this can also affect the selling
price of the nearby buildings [15]. However, on the other hand, citizens that live too far from
the bins have to carry their waste for long distances, what can affect the accessibility to the
system. When citizens are unwilling to incur in this transport cost, waste might be dumped
in unsuitable places [49] which have to be removed by the authorities (incurring in additional
expenses). This conflicting relation is associated with the “Not in my Back Yard” response to
undesirable facilities: the citizens who accept that these facilities are placed nearby are fewer than
the ones who admit that they should be placed somewhere [42]. However, not only environmental
costs take part in the trade-off. Ghiani et al. [24] stated that despite their eagerness to have a GAP
as close as possible, citizens are also willing to have the smaller tax burden that guarantees the
service.

Regarding the research objective and motivation, this article contributes to the state-of-the-
art related literature with a new multiobjective model that simultaneously considers waste bins
installment cost and QoS provided to the citizens together with the reduction of the number of
required visits to empty the bins along the time horizon (i.e., collection frequency), which is an
important contributor to the posterior routing cost of the waste collection [29]. The motivation
of the inclusion of this last criteria is that, although is not a common feature of the state-of-the-
art GAPs location literature, posterior routing costs are highly relevant in MSW system overall
expenses [12]. This situation is even more important in some of the case studies presented in this
work, where decision-makers experience especially large transport costs [7]. This formulation
is solved with an exact approach based on the augmented ε-constraint method [45]. For this
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purpose, the first stage of this method has to be modified for dealing with this computationally
challenging problem. Finally, a heuristic approach based on the web ranking PageRank algo-
rithm [40] is proposed to obtain fast solutions for a GAP location problem. The main focus of
the research is studying computational methods for the GAP location problem, in order to provide
efficient and flexible support tools to help authorities in the decision-making process, especially
in emerging countries. Efficient computational methods allows studying multiple alternatives for
GAP location, making possible the analysis of dynamic situations that may arise in day-to-day
operation of MSW systems (for example, blocked roads, non-availability of specific locations
for GAP installation, complains of citizens for the current location of bins, variations on the col-
lection fleet). Using efficient computational methods, these situations can be studied in advance,
or even almost in real-time, in order to provide accurate modifications to be implemented in the
city.

The article is organized as follows. Section 2 describes the work that have already been
performed in this field. Section 3 presents a multiobjective exact approach to solve the GAP
location problem. Section 4 presents a family of PageRank heuristics to solve a similar GAP
location problem. Section 5 reports the experimental evaluation of the proposed approaches on
real-world instances. Finally, Section 6 presents the conclusions of the research and formulates
the main lines for future work.

2. Literature review

Several authors have addressed this tricky problem. Bautista and Pereira [3] represented
the problem using two different approaches: a minimal set covering problem and a maximum
satisfiability problem. The goal is to locate the minimal number of collection points so that each
dwelling has a collection point within a certain threshold distance by means of metaheuristic
algorithms in scenarios of Barcelona, Spain. The same problem was solved by Ghiani et al. [24],
who proposed a constructive heuristic and validated the results by solving small instances with
CPLEX. Later in Ghiani et al. [26], this heuristic was modified to bound posterior routing costs,
i.e., bins that require different kind of vehicles to be collected are not allowed to be located in the
same GAP. Both works solved scenarios of Nardò, Italy. Di Felice [15] proposed a two-phase
heuristic. First, the GAPs location problem is solved and in a second phase the sizes of the
bins to be assigned to the GAPs is determined. A distinctive characteristic of this model is that
GAPs can be located at any point of the street urban network and not at predefined positions as is
common in similar problems. Studies exploring the sensitivity of the necessary number of GAPs
when the allowable threshold distance between a dwelling and its assigned GAP varies where
performed in L’Aquila, Italy. Rathore et al. [53] proposed a single objective mixed integer model
to locate GAPs while minimizing the installment cost in Bilaspur, India.

Several works consider multiple criteria for optimizing GAP location. Tralhão et al. [60]
solved a multiobjective variant of the problem in an area of Coimbra (Portugal) considering four
different objectives to minimize: the cost of the bin network, average distance between dwellings
and assigned GAPs, and number of citizens within the “push” and “pull” thresholds of an open
GAP. These last two objectives are related with the aforementioned semi-obnoxiousness of bins.
The authors proposed two approaches for finding efficient solutions: weighted sum and goal
programming (minimizing the distance to the “ideal solution”, i.e., the infeasible solution that
has the individual optimal value of each objective). Coutinho et al. [11] solved a similar prob-
lem, but only considering two objectives: the total investment cost and a novel “dissatisfaction
function” that again considers the semi-obnoxiousness of bins. They applied the ε-constraint
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method to build the Pareto front of the problem. In Rossit et al. [56], the augmented ε-constraint
method [45] and weighted sum were used to solve a model that optimize the investment cost and
the accessibility to the system in a simulated instance of Bahı́a Blanca, Argentina. ε-constraint
outperformed the weighted method in computing time, number of efficient solutions, and capac-
ity of controlling the distribution of efficient points along the Pareto front of the problem.

Other researchers have used Geographical Information System (GIS) technology for settling
the location of bins in an urban area. Aremu and Sule [1] applied a GIS-based approach to solve
a p-median problem to locate waste bins in Ilorin, Nigeria and analyzed the sensitivity of the
solution regarding service coverage, public satisfaction, waste bin utility, costs associated with
service provision, and emissions from collection vehicles. Boskovic and Jovicic [6] located bins
for a sector of Kragujevac, Serbia, using ArcGIS Network Analyst. Erfani et al. [20] used the
same program to solve case studies in Dhanbad, India, and Mashhad, Iran, respectively. First,
the authors decided how to rearrange the current distribution of GAPs and then they decided
how many bins to install. A similar approach was applied in Athens [39]. Gallardo et al. [23]
made an important contribution by proposing an organized methodology to design a collection
network divided in several stages: select the number of fractions in which waste is classified,
select the system to be used to collect garbage, (e.g., a door-to-door system or community bins),
select the GAP locations, and select the types of bins that will be used. The authors applied their
methodology in Castellón, Spain using ArcGIS.

Although usually the problem of locating bins is solved separately from the design of col-
lection routes, cost savings can be achieved with an integrated model [25]. Chang and Wei [8]
proposed a fuzzy multiobjective genetic algorithm to solve the recycling drop-off sites allocation
and routing collection in Kaohsiung, Taiwan. They considered the percentage population served,
the average walking distance for the residents to reach recycling drop-off stations, and the ap-
proximated routing distance of collection vehicles as fuzzy planning goals. Hemmelmayr et al.
[32] proposed an integrated approach where the bins allocation problem is solved jointly with
the routing schedule. The general framework is that the GAPs location problem is embedded in a
Variable Neighbourhood Search (VNS) algorithm that determines the routing collection circuits.
The authors used four overall algorithmic approaches with the aim of minimizing the total cost,
i.e., the investment cost of the bins localization and the routing cost. The first two are hierarchi-
cal approaches that optimize in sequence the two parts of the problem, i.e., bins allocation and
then vehicle routing, and vice versa. The third one is a integrated method that solves the overall
problem by dynamically varying service frequencies and bin allocations. In the three approaches,
the bin allocation part is solved with CPLEX. Finally, in the fourth approach the authors used
a heuristic estimation for the bin allocation part. The general heuristic approach was validated
by comparing the results of small instances solved with a mixed-integer programming model in
CPLEX. Some articles propose solving the facility location and the routing sequentially. In Lin
et al. [41], the GAPs location is first optimized with an integer programming model and then
the routes are determined with an ant colony metaheuristic. The authors considered that the col-
lection points have a temporal availability, i.e., generators only can carried their garbage during
the collection site time window. The experimental evaluation was performed on an scenario of
Taichung, Taiwan. Ghiani et al. [26] also solved both problems sequentially for a case study
in Nardò, Italy. Erfani et al. [19] conducted the same procedure in an scenario of the city of
Mashhad, Iran.

3. An exact multiobjective approach for GAP location
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This section presents an exact multiobjective approach for solving the GAP location prob-
lem. The outline of the mathematical formulation is described in Section 3.1 and the resolution
approach is described in Section 3.2.

3.1. A comprehensive mathematical formulation

The proposed model aims at proposing a bin network that:

1. minimizes the average required collection frequency of the containers. This criterion aims
at assuring that the period of time between two consecutive visits of the collection vehicle
to a bin for emptying their contents is as large as possible;

2. minimizes the installation cost of bins;
3. minimizes the average distance between the generators and the assigned bins. This aims

to enhance the accessibility of citizens to the collection network and, thus, is a metric of
the QoS provided to the users that has been used in the related literature [11, 24, 60].

The aforementioned criteria imply conflicting goals. If the average collection frequency is
low, i.e., the period of time between every collection is relatively large, then the necessary stor-
age capacity in GAPs (proportional to investment cost) will be large. Similarly, an overmuch
comfortable assignment where generators can find GAP very near their home will imply large
investment costs. This situation also will have a negative impact in the design of the collection
routes of the containers due to the numerous bins that will be installed and are required to be
visited [38].

The mathematical formulation is presented as an Integer Programming (IP) model. The sets
and parameters of the model are:

• A set J of bin types. Each bin type has a given purchase price cin j, capacity cap j, and
required space for its installation e j.

• A set I of predefined potential locations where a GAP can be opened. Each potential
location i has an available space Esi for bins.

• A set P of (groups of) generators. The way these groups are conformed is explained in
Section 5. The distance from generator p to GAP i is dpi, and the maximum distance
between any generator in P and its assigned GAP is D.

• A set H of waste fractions. Each dwelling p has a generation rate bph of waste fraction h.

• A set Y of collection frequencies. Each frequency y has a parameter ay that indicates the
number of days between two consecutive visits of the collection vehicle. For example,
assume that the patterns considered are to collect the waste daily (y1) or every two days
(y2) (i.e., Y = {y1, y2}). Thus, ay1 = 1 and ay2 = 2.

The proposed model is described in Eqs. (1)-(12) where variable t jhi represents the number of
bins of type j and waste fraction h installed in GAP i, variable xpi is 1 if generator p is assigned
to GAP i and 0 otherwise, and variable fhiy is 1 if the waste fraction h in GAP i is collected with
a frequency y, 0 otherwise.

Three objective functions are considered. Eq. (1) expresses the average collection frequency
of the number of GAPs that are opened. The frequencies are divided by the number of days
between two consecutive visits (ay). Therefore, for minimizing Eq. (1) the model aims both
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to use the smaller number of GAPs (an unused GAP respects fhiy = 0 ∀ y ∈ Y) and, for those
GAPs that are used, to impose a low collection frequency (associate with a large ay). This aims at
bounding the posterior routing costs of waste collection: either a GAP does not have to be visited
because it remains unused or it has to be visited with a low frequency. Eq. (2) represents the
average distance between generators and the assigned GAPs. Eq. (3) represents the investment
cost.

min

∑
h∈H, i∈I

y∈Y

(
fhiy

ay

)
|I| |H|

(1)

min
∑

p∈P, i∈I

(
dpixpi

)
|P|

(2)

min
∑

j∈J, h∈H
i∈I

(
t jhicin j

)
(3)

Subject to∑
i∈I

(
xpi

)
= 1, ∀ p ∈ P (4)∑

j∈J, h∈H

(
t jhie j

)
≤ Esi, ∀ i ∈ I (5)∑

p∈P, y∈Y

(
bphxpi fhiyay

)
≤

∑
j∈J

(
cap jt jhi

)
, ∀ h ∈ H, i ∈ I (6)∑

y∈Y

fhiy ≤ 1, ∀ h ∈ H, i ∈ I (7)

|P|
∑
y∈Y

fhiy ≥
∑
p∈P

xpi, ∀ h ∈ H, i ∈ I (8)

dpixpi ≤ D, ∀ p ∈ P, i ∈ I (9)
xpi ∈ [0, 1] ,∀ p ∈ P, i ∈ I (10)
fhiy ∈ [0, 1] ,∀ h ∈ H, i ∈ I, y ∈ Y (11)
t jhi ∈ Z+

0 ,∀ j ∈ J, h ∈ H, i ∈ I (12)

Nine sets of constraints are included in the problem formulation. Eq. (4) enforces that every
dwelling is assigned to one GAP. Eq. (5) controls that the maximum available space in each
GAP is not exceeded. Eq. (6) ensures that the volume assigned to one GAP is not larger than
the storage capacity installed in that GAP. Eq. (7) establishes that only one collection frequency
pattern is assigned to each waste fraction of each GAP. Eq. (8) ensures that if (at least) one
dwelling is assigned to a GAP, a frequency pattern to collect that garbage is selected. Eq. (9)
establishes the maximum threshold distance between a dwelling and its assigned GAP. Eqs. (10)
and (11) indicate the binary nature of the variables. Finally, Eq. (12) states that variables t jhi are
non-negative integer.

The proposed mathematical formulation (Eqs. (1)-(12)) is not linear due to the presence of
Eq. (6). In the literature, non-linear integer problems are often transformed through linearization
techniques since linear formulations can benefit from a larger variety of resolution methods [28].
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However, when linearizing the formulation it is important to not increase the number of integer
variables (which are closely related to the computational complexity of the problem). Thus,
in this article the linearization technique proposed by Glover [27], which respects this rule, is
applied. Eq. (6) is replaced with Eqs. (13)-(17) through the introduction of continuous variable
uphiy. Finally, the linear equivalent formulation of the model is composed by Eqs. (1)-(5) and (7)-
(17).

∑
p∈P, y∈Y

[
bphay(uphiy + fhiy − 1 + xp,i)

]
≤

∑
j∈J

(
cap jt jhi

)
, ∀ h ∈ H, i ∈ I (13)

uphiy ≥ 1 − xp,i − fhiy, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (14)
uphiy ≤ 1 − fhiy, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (15)
uphiy ≤ 1 − xpi, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (16)
uphiy ≥ 0, ∀ p ∈ P, h ∈ H, i ∈ I, y ∈ Y (17)

3.2. Solution approach
The proposed approach it based on a variation of the ε-constraint method, initially proposed

by Haimes et al. [30]. Although ε-constraint has overcome some of the main disadvantages
of the weighted sum, it has also some important drawbacks, e.g., the generation of weakly ef-
ficient solutions [44]. Therefore, novel variants of this method have emerged to improve the
original version, such as the one used in this paper: augmented ε-constraint which was proposed
by Mavrotas [44] (AUGMECON) and later improved by Mavrotas and Florios [45] (AUGME-
CON2).

In order to apply the AUGMECON2 method, the range of the objectives function over the
efficient set of solutions, i.e., the interval between the best (ideal) and the worst (nadir) values
that the objective can assume within the Pareto front, are needed. These values are used as
the limits of the interval within which the parameters ε associated to each criteria can vary.
Although AUGMECON2 should be able to deal with approximated ranges that are larger than
the range over the efficient set, using the actual efficient values (or at least close approximations)
can reduce the computing time [45]. This is particularly important in problems that are hard
to solve, as is the case of the NP-hard problem addressed in this paper. Unlike the ideal value
that can be closely approximated through single objective optimization, estimating the nadir
value over the Pareto front is generally much harder [18]. Since the target is the efficient nadir
value (within the Pareto front), approaches entirely based on individual optimization are not
very convenient. For example, Ehrgott and Ryan [17] estimated the nadir values from a payoff

table composed by the results of the individual optimization of each objective. However, this
payoff table can have Pareto suboptimal solutions in case these single objective problems have
alternative optima [54]. Another example are Zhang and Reimann [61], who calculate the nadir
values from the optimization of the corresponding inverse objective, which is not guaranteed to
be the efficient nadir value.

In the original article that introduced AUGMECON, Mavrotas [44] applied lexicographic
optimization. In an initial stage, they optimize the first criteria as a single objective problem.
In a second stage, they optimize the second criteria in a single objective fashion but including
a restriction that prevents the first criteria to obtain a worse value than the one of the initial
stage. This continues until the last criteria is optimized, generating a non-dominated solution.
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Moreover, the authors distributed a ready-made version in GAMS for the sake of reproduction.
However, when tested on the model of the previous Section, this implementation was not able to
converge to a feasible solution whithin reasonable execution times. This might be related with
the NP-hard nature of the addressed problem, as happened with a similar biobjective problem
in Rossit et al. [57]. In this article, the use of warm starts is proposed for enhancing the conver-
gence of the lexicographic approach [52]. Since, in the lexicographic approach the solution of
the previous stage constitutes a feasible solution of the following stage, this solution can be used
for initializing the second stage. Providing an incumbent solution from the beginning, reduces
the size of the branch-and-cut tree and allows the implementation of heuristics that require an
incumbent solution [34].

In another case, Tralhão et al. [60] obtained the best values with an unbalanced weighted
sum method. When they optimize one of the objectives, they still assign very small weights to
the other ”[...] to ensure the identification of a non-dominated solution.” [60, pag. 2423]. How-
ever, in their approach weights are not normalized which can affect the result. If the objectives
have different units of measurement or different ranges the weighted sum can bias the results
towards those attributes with higher absolute values [see 2]. One reason for not normalizing, is
that there is not prior information about the magnitudes of the objectives. To overcome this issue,
in our previous work [57] the results of single objective optimization are used for the normal-
ization, as was proposed in Rossit [55]. The method works as follows. Let K be the set of the
optimization criteria of a minimization multiobjective problem and wk be the weight assigned
to criteria k defined by function Ob jk. Moreover, Ob jwk and Ob jbk are the worst and the best
value of objective k taken from single objective optimization. Eq. (18) is applied with the aim
of finding the efficient range of the objectives individual optima of the objective k′ ∈ K, with
wk′ � wk ∀ k ∈ K, k , k′.

min

wk′
Ob jk′ − Ob jbk′
Ob jwk′ − Ob jbk′

+
∑
k∈K
k,k′

wk
Ob jk − Ob jbk
Ob jwk − Ob jbk


 (18)

4. A Pagerank-based heuristic for the GAP location problem

The GAP location problem, as a variation of the CFLP, is NP-hard. Thus, competitive heuris-
tics approaches are applied to generate feasible solutions in reasonable computing times [47]. An
idea applied in previous studies [4, 43, 59] is to define the problem over a weighted graph, in
which the vertices represent the possible locations and the links give the weight/influence/importance
of the linked vertices. Then, a method to sort the vertices according to the relevance of each ver-
tex on the whole system is applied, returning them in a vector. Finally, a constructive heuristic is
used to configure the whole system iterating over the vector of sorted vertex. In literature, ver-
tices have been sorted according to their PageRank value computed by using weighted PageRank
algorithm [43]. PageRank can be defined as a voting algorithm. It was developed to compute
the relevance of web pages in Internet taking into account the inbound and outbound links [40].
The key idea behind PageRank is to allow propagation of influence along the whole network of
web pages, instead of just counting the number of other web pages pointing at the web page.
The weighted PageRank is applied to a given directed graph G = (V, E) defined by V (a set of
vertices) and E (a set of edges). The algorithm starts by initializing the PageRank value of each
vertex vi to a fixed value d, i.e., PRW (vi) = d, ∀vi ∈ V . d is known as the dumping parameter
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and its default value is 0.85. Then, an iterative process is performed until a stop condition is
reached (the convergence value is below a given threshold or a maximum number of iterations is
performed). During this iterative process, PRW (vi) is computed according to Equation (19). In
that equation, In(vi) is the set of vertices that point to it (predecessors), and Out(vi) is the set of
vertices that vi points to (successors), and wi j is the weight for the edge that connects vi and v j.

PRW (vi) = (1 − d) + d ×


∑

v j∈In(vi)

wi j ×
PRW (v j)∑

vk∈Out(v j)
w jk

 (19)

For applying PageRank to the GAP location problem, the city is modeled as a fully con-
nected weighted graph G = (V, E), by taking into account topological information (i.e., streets,
collection points, and generator). G is defined by the set of location of collection points P and
the set of edges E. The weight of each edge w j,k is given by the weight of the arc between
two collection points, which is computed according to w jk =

b j+bk

d j,k
, which relates the impact

of the waste generated in the generator in such collection points and their distance. Thus, the
tentative locations of collection points are ranked in a sorted vector IPR in which iPR

j , i
PR
k ∈ I,

j < k ⇔ PRW (iPR
j ) > PRW (sPR

k ). Once the collection points are sorted in IPR, a construc-
tive heuristic is applied to select a collection point configuration and locate it. Considering the
particular structure of PageRank algorithms, the optimization criteria considered are slightly dif-
ferent from the ones proposed in Section 3. This heuristic considers that the collection frequency
is set to one day for all the GAPs where a waste bin is installed, i.e., once a day the collection
points are emptied. Then, additionally to the objectives of minimizing the total average distance
between the generator and the assigned GAPs and minimizing the number of bins installed, it
aims to maximize the total amount of waste collected. This last objective is valuable in develop-
ing countries where generally the formal MSW system has to compete with informal collection
[53, 58]. Garbage source classification is not considered in this approach.

PageRank operates in two steps. First, the sorting step, in which, it sorts the possible location
of the collection points by using PageRank to obtain IPR. Second, the constructive step, in which,
it iterates over IPR to select the best configuration of the containers for such a collection point
according to one of the three objectives of the problem. Depending on which objective is pursued
three different variants of the heuristic are developed:

• Pagerank-Vol: selects the configuration that collects the maximum volume of waste from
the nearby generator. If more than one containers configuration collect the same maximum
of waste, the one with the cheapest installation cost is selected.

• Pagerank-Dist: considers the solutions that collects at least all the generated waste by the
nearest dwelling, then it selects the one that allows users to walk the shortest distance. If
more than one configuration have the same minimum distance, the one that collects the
maximum volume of waste is selected.

• Pagerank-Cost: evaluates the solutions that collects at least all the generated waste by the
nearest generator, then it considers the one with the cheapest installation costs. If more
than one configuration have the same minimum cost, the one that collects the maximum
volume of waste is selected.

The general skeleton of the PageRank heuristic is described in Algorithm 1.
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Algorithm 1 Skeleton of Pagerank-Vol, Pagerank-Dist, and Pagerank-Cost

1: procedure Pagerank(I, P, J,H)
2: G ← getGraph(I, P,H) . Get graph G=(V,E)
3: IPR ← PRW (G) . Sort step: Obtain IPR

4: S olution← newVector(length(IPR))
5: i← 0

. Loop while there are location points not configured
. and waste to be collected

6: while i < length(IPR) and
∑

p∈P
h∈H

(
bph

)
> 0 do

. Constructive step
7: S olution[IPR(i)]← selectTheBestChoice(IPR(i), P, J,H)
8: i← i + 1
9: return S olution

The model solved with PageRank algorithms considers that every opened GAP is emptied
daily. Moreover, it does not require to collect all the garbage (although this quantity is maximize
as one of the objectives). Both situations reduce the minimal required installed capacity in com-
parison to the model solved in Section 3. This way these solutions can provide a lower bound in
terms of installment cost to the solutions provided by the exact approach.

5. Experimental evaluation

This section describes the experimental evaluation of the proposed computational methods
for solving the GAPs location problem. The experimentation was performed on a Core i7 pro-
cessor, with 16 GB of RAM memory. The problem was modeled in C++ and the resolution of
the the exact approach was performed with the parallel mode of CPLEX 12.7.1.. Section 5.1
describes the real problem scenarios considered in the study. The experimental evaluation of the
exact approach is reported in Section 5.2 and the evaluation of the PageRank heuristic approach
is reported in Section 5.3. Finally, in Section 5.4 the analysis of the results is performed.

5.1. Real scenarios for the GAPs location problem

The proposed resolution approaches were evaluated on real scenarios built using information
from the cities of Montevideo, Uruguay, and Bahı́a Blanca, Argentina. Montevideo is the capital
city and the largest urban agglomeration of Uruguay, with a population of about 1.5 million
people. Nowadays, Montevideo has a community bins system in the highly populated areas
which supports source classification. Waste is classified in two main fractions: recyclable waste
and ’mixed’ waste [36], which includes all the types of waste that can not be recycled in the
city. Due to variations of public policies and the incorporation of new technologies, the City
Hall can increase the lists of materials that are considered recyclable waste along the time [36].
For this article, recyclable waste is composed mainly by paper, plastic, metal, and glass whereas
mixed waste is composed mainly by organic waste and other humid domestic waste (e.g., diapers
and hand towels), ceramic, sweepings, bones, among others. The model is applied to three
different scenarios of Montevideo (Table 1). Considering information about bins alread used in
the city, from the government of Montevideo [35], three bin types ( j1, j2, and j3) are considered,
according to the normal utilization in Montevideo. The values of parameters c j, C j, and e j are:
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1000 monetary units (m.u.), 1 m3 and 1 m2 for bin type j1, 2000 m.u., 2 m3 and 2 m2 for bin type
j2, and 3000 m.u., 3 m3 and 3 m2 for bin type j3.

Bahı́a Blanca is one of the main export ports and industrial centers of Argentina and, with
approximately 300,000 inhabitants, is the largest city in the South of Argentina. The MSW col-
lection system is still based on an unsorted waste door-to-door system but the local government
aims to use a community bins system instead which has been proved to be a valid strategy to
reduce the high expenses of the system [5] specially the logistic costs which are remarkably high
in Argentina [7]. Three scenarios from Bahı́a Blanca are considered (Table 1). Since this city
has not implemented a community bins system yet, three types of commercial bins are used for
the test. The values of parameters c j, C j, and e j for each type are: 2120 monetary units (m.u.),
1.1 m3 and 1.34 m2 for bin type j1, 3170 m.u., 1.73 m3 and 1.67 m2 for bin type j2, and 5380
m.u., 3.1 m3 and 2.5 m2 for bin type j3.

Table 1: Details of the proposed scenarios for the GAPs location problem.

City Id Neighborhood Main features Number of
potential GAPs

Estimated
population

Montevideo

MVD 1 Downtown
residential,
commercial,
administrative

59 5211

MVD 2 Punta Carretas
high-income
residential,
commercial

63 7767

MVD 3 Villa Española medium-low-income
residential 70 2528

Bahı́a Blanca

BBCA 1 Barrio Universitario
residential,
commercial,
administrative

88 7903

BBCA 2 La Falda middle-low-income
residential 99 4929

BBCA 3 Villa Mitre
middle-income
residential,
commercial

115 3033

The proposed study is focused on residential areas, mainly because in the studied cities there
is no clear difference between administrative, commercial, and residential areas (i.e., most of
administration offices and shops are widely distributed over many neighborhoods). Therefore,
the set of scenarios of each city was chosen with the aim of considering representative residential
neighborhoods. In the case of Montevideo, MVD 1 is a central residential area of the city, which
also has several administrative buildings and a relevant commercial activity. MVD 2 is high-
income residential zone with an important commercial activity. Finally, MVD 3 is a residential
lower-middle-income neighborhood, with fewer commercial buildings. In the case of Bahı́a
Blanca, BBCA 1 also has the three aforementioned characteristics, being a residential area that
also includes several administrative and commercial activities. BBCA 3 is a middle-income
residential area with an important commercial activity. Finally, BBCA 2 is mainly a lower-
middle-income residential neighborhood.

The population density for Montevideo (per square block) was retrieved from the City Hall
website [37], while the garbage generation rate and composition was retrieved from a study car-
ried out by the national government [46]. For Bahı́a Blanca scenarios, the population distribution
was obtained from the local government [16], the composition of waste was retrieved from a re-
port performed by a local research center [51] and the density of the different garbage flows from
a characterization study performed in Argentina [50]. Distances between generators and GAPs
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were calculated using a modified version of the R package osmar [21] in order to obtain walking
(undirected) distances. As in many works done on the field [11, 60], the generators are aggre-
gated in order to maintain the tractability of the problem. In our case, generators were aggregated
in linear sectors. The values of the other parameters for all the studied scenarios are: D = 300m
and Esi = 5m2 for every GAP i. Finally, three frequencies are considered: y1, y2, and y3 with ay

equal to 1, 2, and 3, respectively. Daily collection is effective to prevent environmental problems,
but it can yield sub-optimal results, mainly due to operational costs when bins are not full every-
day. Although a frequency of three days is not common, it was included in the model since it is
currently implemented in scenarios MVD 2 and MVD 3 by the administration of Montevideo.
This set of frequencies respects the highest and lowest collection frequencies that are currently
implemented in Montevideo, y1 for scenario MVD 1 and y3 for scenarios MVD 2 and MVD 3.

5.2. Experimental evaluation: exact approach

This section reports the results of the exact approach for solving the GAP location problem.
A two-phase procedure is applied for obtaining the solutions. The first phase consists on approx-
imating the efficient range of the objectives and the second phase consists on the application of
AUGMECON2 to obtain multiobjective solutions. For the sake of brevity, only for the scenarios
with unclassified waste the two stages are presented. For the results of first phase of scenarios
with source classified waste refer to Appendix A.

As stated, in the first phase four different methods are used to approximate the ranges of the
objectives over the efficient set. These are: single objective optimization, (unbalanced) weighted
sum, and the two lexicographic approaches: straightforward lexicographic optimization and the
lexicographic method that uses warm starts. The time limit of the runs was set to 4200 seconds.
For the two lexicographic approaches, this time limit was imposed on each stage of the opti-
mization stages, i.e., when each criteria was optimized. The results are presented in Tables 2-4.
For each scenario, the ideal and nadir values, i.e., Idealk and Nadirk, within the approximated
efficient set (non-dominated solutions) are selected for each objective k ∈ K. Then, the relative
deviation of the value of each objective (∆Ob jk) was computed by Eq. 20.

∆Ob jk =
Value − Idealk
Nadirk − Idealk

· 100% (20)

Finally, the Euclidean norm is applied to obtain an overall estimation of the deviation of each
solution using the formula L2 =

(∑
k∈K

(
∆Ob jkk

)2
)1/2

. This norm, which has been used in similar
works [11, 60], measures the Euclidean distance to the ideal multiobjective solution giving to
decision-makers an estimation of how far a solution is from the ideal (infeasible) solution [14].

The results reported in Tables 2–4 are organized, from left to right, in the following columns:
the method used to approximate the efficient ranges, the optimized objective, the obtained value
for each of the three individual objectives and its individual deviation, the overall deviation L2,
the execution time (in seconds), and either if the solution is dominated or not by any other solu-
tion of the four methods. The execution time is a relevant feature considering the aforementioned
aim of this work to provide efficient and flexible methods to decision-makers that allow them to
explore different compromising solutions. Moreover, efficient methods that provide relatively
good solutions with few computational resources allow to resolve the GAP location problem
when the input parameters vary significantly, e.g., when there are important variations of the
population density or when an street is blocked to vehicular access. In the case of lexicographic
optimization, the column of optimized objective indicates the order in which the objectives were
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optimized. For example, if the optimized objective is Ob j1,Ob j2 it means that Ob j1 was op-
timized on the first stage, then Ob j2 on the second stage and finally the remaining objective
Ob j3 on the third stage. It is considered that lexicographic optimization reaches a feasible so-
lution only if the solver is able to find a feasible solution in the third stage. The first stage of
lexicographic optimization is the single objective optimization of the first objective that is op-
timized. Similarly, the unbalanced weighted sum approach requires the initial objective ranges
from single objective optimization to apply Eq. (18). For the analysis reported in this article, the
results of the single objective optimization are considered as an input of the weighted sum and
the lexicographic methods; therefore, the execution times of these methods do not include the
time required to perform the single objective optimization.
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In the second phase, AUGMECON2 is applied to construct multiobjective solutions in the
scenarios with unclassified waste using the approximated ranges of the objectives over the effi-
cient set obtained from the first phase. When using AUGMECON2 for searching a set of feasible
solutions in a problem, the upper bound of the number of runs that the solver will performed is
determined by the formula (g + 1)p−1, where g is the number of gridpoints, i.e., the number of
intervals in which the objective range is divided that is set by the user, and p is the number of
objectives of the problem. This is an upper bound because AUGMECON2 has an acceleration
mechanism with early exit from the loops [45]. The number of gridpoints is set at two and, thus,
the upper bound of runs is (2 + 1)3−1 = 9.

Table 5 reports the results for all the proposed scenarios considering unclassified and source
classified waste.

Table 5: Multiobjective solutions.

Solution Ob j1 ∆Ob j1 (%) Ob j2 ∆Ob j1 (%) Ob j3 ∆Ob j1 (%) L2 (%) Execution
time (s)

MVD 1 - unclassified waste

1 0.3475 28.09% 0.00 0.00% 16600 100.00% 103.87% 0.13
2 0.1808 2.98% 37.76 33.07% 11200 54.24% 63.59% 4205.67
3 0.1695 1.28% 75.80 66.37% 8400 30.51% 73.06% 4203.55
4 0.1638 0.43% 112.78 98.76% 7500 22.88% 101.37% 4200.35

MVD 2 - unclassified waste

1 0.1016 0.00% 110.78 97.01% 4500 13.83% 97.99% 0.13
2 0.1016 0.00% 74.11 64.89% 5500 24.47% 69.35% 4203.56
3 0.1120 2.06% 37.64 32.96% 8900 60.64% 69.05% 4233.70
4 0.3333 45.88% 0.00 0.00% 12600 100.00% 110.02% 4206.60
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MVD 3 - unclassified waste

1 0.0452 0.00% 129.76 113.62% 2400 12.12% 114.27% 4205.60
2 0.0571 3.52% 131.30 114.97% 1600 0.00% 115.03% 4208.30
3 0.0452 0.00% 92.21 80.75% 3400 27.27% 85.23% 4203.50
4 0.0667 6.34% 45.69 40.00% 4900 50.00% 64.35% 4204.10
5 0.0857 11.97% 46.57 40.78% 3800 33.33% 54.01% 4206.90
6 0.3333 85.21% 0.00 0.00% 8200 100.00% 131.38% 0.14

BBCA 1 - unclassified waste

1 0.0909 1.02% 152.71 97.72% 146.24 28.06% 101.68% 4202.20
2 0.0966 2.04% 102.61 65.67% 226.63 64.48% 92.06% 4200.40
3 0.1174 5.78% 103.88 66.48% 156.24 32.59% 74.26% 4200.00
4 0.3333 44.56% 0.00 0.00% 305.02 100.00% 109.48% 1.51
5 0.4451 64.63% 0.00 0.00% 227.63 64.94% 91.96% 1601.27

BBCA 2 - unclassified waste

1 0.0297 0.56% 153.24 83.39% 103.20 47.38% 95.91% 4206.00
2 0.0495 7.30% 101.80 55.40% 99.20 44.64% 71.52% 4207.40
3 0.1089 27.51% 49.95 27.18% 116.20 56.26% 68.27% 4205.00

BBCA 3 - unclassified waste

1 0.0402 0.00% 160.10 98.22% 129.12 41.53% 106.64% 4206.30
2 0.0690 10.20% 106.97 65.62% 172.12 65.71% 93.42% 4203.60
3 0.2989 91.79% 0.00 0.00% 233.12 100.00% 135.74% 3.92

MVD 1 - classified waste

1 0.1879 0.80% 127.22 95.69% 9900 36.92% 102.57% 4200.12
2 0.1864 0.40% 84.93 63.88% 11300 47.69% 79.72% 4202.34
3 0.1822 -0.80% 44.29 33.31% 10500 41.54% 53.25% 4203.12
4 0.3475 46.18% 0.00 0.00% 18100 100.00% 110.15% 0.16

MVD 2 - classified waste

1 0.1094 -3.33% 123.36 81.28% 8500 38.81% 90.13% 4225.40
2 0.1120 -2.50% 96.86 63.82% 8000 35.07% 72.87% 4225.40
3 0.1133 -2.08% 50.09 33.01% 9400 45.52% 56.27% 4225.40
4 0.3346 68.75% 76.51 50.41% 16700 100.00% 131.41% 4225.40
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MVD 3 - classified waste

1 0.0500 0.41% 121.00 86.20% 5500 30.71% 91.51% 4211.70
2 0.0524 1.24% 92.31 65.76% 5300 29.13% 71.94% 4219.70
3 0.0667 6.20% 46.64 33.23% 5500 30.71% 45.67% 4285.90
4 0.3333 98.76% 0.00 0.00% 14300 100.00% 140.55% 0.16

BBCA 1 - classified waste

1 0.2528 56.76% 54.48 38.81% 397.89 96.16% 118.21% 4200.00
2 0.3333 85.47% 0.00 0.00% 409.89 100.00% 131.55% 0.36

BBCA 2 - classified waste

1 0.0429 3.37% 167.08 97.68% 124.00 21.65% 100.11% 4230.50
2 0.0462 4.33% 113.39 66.29% 123.00 21.38% 69.79% 4235.70
3 0.0990 19.74% 56.73 33.17% 158.00 30.79% 49.37% 19.90

BBCA 3 - classified waste

1 0.0488 5.09% 140.00 81.85% 118.00 13.41% 83.09% 4221.00
2 0.0571 7.53% 100.27 58.62% 108.00 10.73% 60.07% 4283.80
3 0.1048 21.42% 49.54 28.96% 135.00 17.95% 40.25% 4240.20
4 0.2952 77.00% 0.00 0.00% 265.00 52.69% 93.30% 3.31

5.3. Experimental evaluation: PageRank heuristic
Table 6 reports the results of the proposed PageRank heuristic algorithms for the scenarios of

Bahı́a Blanca and Montevideo. In all the scenarios the PageRank algorithms provided solutions
that collected all the waste even though this was not imposed in the formulation. The first col-
umn indicates the variant of PageRank heuristic used, then the value of the optimized objectives
of distance and installment cost are reported, and finally the execution times (in seconds) are
presented.

5.4. Analysis of results
From the first phase of the exact approach, some results are important to highlight. The

problems that minimize the average distance (Ob j2) (or that considered minimizing Ob j2 in the
first stage) are easier to solve and optimal solutions are found, in most cases in less than 5 sec-
onds. Straightforward lexicographic optimization can only find feasible solutions when Ob j2
is optimized on the first stage. However, when warm starts are used, lexicographic optimiza-
tion is always able to find feasible solutions within the considered time limit in all executions.
Moreover, these solutions are generally non-dominated by single objective optimization and the
weighted sum. In some particular scenarios the weighted sum was able to find non-dominated
solutions too, e.g., three solutions in scenario BBCA 3. These exceptions are valuable, consider-
ing that weighted sum is less time consuming than lexicographic approaches. The second phase
computed some compromise solutions that can be useful for decision makers to not depend on
the extreme solutions computed in the first phase. However, the number of feasible solutions
obtained in some scenarios is quite small considering that the upper bound for the number of
runs to perform is 9. This results is due to the NP-hard nature of the problem, which causes that
no feasible solutions are found within the time limit in several trials. Another important aspect is
that AUGMECON2 was able to find solutions that improved the ideal value of Ob j1 in scenarios
MVD 1 and MVD 2 with classified waste.
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Table 6: Solutions obtained by using Pagerank methods in Bahı́a Blanca.

Method Ob j2 Ob j3 Execution time (s)

MVD 1

PageRank-Cost 100.30 5400 5.74
PageRank-Dist 0.00 12700 6.32
PageRank-Vol 174.57 7900 5.77

MVD 2

PageRank-Cost 98.44 3400 7.46
PageRank-Dist 0.00 13700 8.80
PageRank-Vol 166.52 4000 6.76

MVD 3

PageRank-Cost 123.39 1700 8.58
PageRank-Dist 0.00 14100 10.48
PageRank-Vol 176.27 2800 8.01

BBCA 1

PageRank-Cost 155.85 122.96 11.23
PageRank-Dist 0.00 380.53 12.34
PageRank-Vol 209.14 196.42 11.23

BBCA 2

PageRank-Cost 191.01 55.12 17.83
PageRank-Dist 0.00 428.24 18.81
PageRank-Vol 222.59 98.51 16.28

BBCA 3

PageRank-Cost 162.51 82.68 21.27
PageRank-Dist 0.00 492.89 25.12
PageRank-Vol 204.52 148.52 20.69

PageRank-Cost was the best heuristic, consistently outperforming PageRank-Dist and PageRank-
Vol in all problem scenarios, even for QoS-related metrics considered in the study. Although
PageRank methods are not forced to collect all the waste, they provided solutions that collected
all the available waste. Solutions obtained with the exact method outperformed PageRank-Cost
in terms of installment cost in all scenarios but MVD 2. They also provided solutions that dom-
inated the solution of PageRank-Dist with the same value of Ob j2 but better values of cost . The
installment cost of PageRank-Cost solutions were between 6.25% and 12.50% higher for Monte-
video scenarios and from 44.91% and 62.69% higher for Bahı́a Blanca scenarios. Nevertheless,
the heuristic solutions where obtained, on average, with remarkably shorter computing times.

The aim of multiobjective optimization is to present a representative set of solutions that aims
to reflect the trade-offs among the different optimized criteria. Then, if a candidate solution is to
be selected, a common practice is to pick the solution that is nearest to the ideal multiobjective
solution [14]. In this case, the ones that have the smaller L2 which are highlighted in Table 5 for
every scenario. In Fig. 1, the candidate solutions for the three scenarios of Bahı́a Blanca with
unclassified waste are depicted. Then, in Fig. 2 candidate solutions for classified waste scenarios
of MVD 1 and MVD 2 are shown. In the particular case of Bahı́a Blanca, the approaches allowed
to obtain some feasible solutions for the GAP location problem in the city while considering two
costs measures such as the number of installed bins and minimizing the posterior routing cost.
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This last criterion is of particular importance for Argentinian cities since they experience one of
the highest logistic costs in the region [7] and, thus, solutions with particularly small ∆Ob j1 may
also be of interest for the City Hall of Bahı́a Blanca to implement the community bins system.

Figure 1: Used GAPs in candidate solutions for the scenarios of BBCA 1 (yellow), BBCA 2 (blue) and BBCA 3 (red)
with unclassified waste. Each GAP is labeled with a vector representing the bin configuration ( j1, j2, j3) and the assigned
collection frequency. Source: background map from [48].

In the case of Montevideo, the candidate solutions are useful for comparison with the current
GAPs distribution. Therefore, they were compared with simulations performed with the current
location of GAPs in Montevideo. Central neighborhoods of Montevideo, such as MVD 1, have
community bins for both recyclable and mixed waste. However, in other neighborhoods such as
MVD 2 and MVD 3, recyclable waste is deposited in rather sparse large bins located in crowded
places [36]. To perform a fair comparison, in these cases bins of recyclable waste were supposed
to be located next to mixed waste ones. The improvements of the candidate solutions over the
current locations are reported in Table 7. Overall, the candidate solutions substantially improved
results in terms of frequency collection (up to 51.1% of improvement in instance MVD 1) and
average distance to the users (up to 49.2% of improvement in instance MVD 3). On the one
hand, these results indicate that the proposed model is able to accurately compute solutions with
a significantly better QoS, with a direct implication for citizens. On the other hand, for the cost
objective improvements were obtained for two out of the three studied scenarios. In MVD 1 the
cost of the candidate solution is larger than the one from the real current locations of GAPs. This
is a busy area with several touristic places and public buildings and, thus, it is important to avoid
the negative impact of overflowed bins. The City Hall empties the bins on a daily basis and,
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Figure 2: Used GAPs (green circles) in candidate solutions for the scenarios of MVD 1 (left) and MVD 2 (right) with
classified waste. Each GAP is labeled with a vector representing the bin configuration ( j1, j2, j3) and the assigned
collection frequency. Red circles are current real location of GAPs. Source: background map from [48].

Table 7: Comparison between candidate multiobjective solutions and current real location of GAPs in Montevideo.

Instance
Objective

Ob j1 Ob j2 Ob j3

MVD 1 -51.14% -37.76% 87.5%
MVD 2 -44.93% -23.92% -12.15%
MVD 3 -27.25% -49.21% -1.78%

therefore, the installed capacity (related to number and types of bins) required for accumulating
waste in the GAPs is relatively small (only receives the amount generated within a day). On
the other hand, in the candidate solution, where GAPs are generally emptied every two or three
days (see Fig. 2), larger investment cost in GAPs’ capacity is required (since they need to store
the waste generated during two or three days). This evinces the aforementioned compromising
solution of the GAP location costs and the posterior operational routing costs. In the other
scenarios, i.e., MVD 2 and MVD 3, waste is collected by the City Hall with a frequency that has
a maximum number of days between two consecutive visits of three days (ay3 = 3).

6. Conclusions and future work

This article studied the problem of locating community waste bins in urban areas. This is a
relevant problem for decision makers of cities that already implement a community bins system,
as Montevideo, Uruguay, or are willing to implement it, as Bahı́a Blanca, Argentina. Real-world
instances of these two cities were used in the experimentation.

Exact and heuristic approaches were developed to solve the problem. The exact model aims
at optimizing the investment cost, the accessibility to the system, and a proxy indicator of the
routing cost (the collection frequency required to remove waste from the bins). This last objective
has not been usually addressed in the literature. However, it is a relevant criteria for cities that
experience remarkably large transport costs as occurs for some of the analyzed scenarios. The
exact algorithm is based on AUGMECON, which uses as input the ideal and nadir values of each
objective. Four methods for obtaining the ranges were compared: single objective optimization,
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unbalanced weighted sum, straightforward lexicographic optimization, and a novel variation that
uses a warm start to enhance lexicographic optimization. Results indicate that including warm
starts remarkably increases the convergence of the lexicographic approach. In turn, weighted
sum also obtained some relevant results for particular scenarios. Moreover, selected multiob-
jective solutions were compared with simulations performed with the current GAP distribution
in Montevideo, obtaining improvements up to 51.14% in terms of cost, up to 37.76% in terms
of accessibility to the system, and up to 12.15% in terms of collection frequency. A family of
PageRank heuristics were also developed to construct feasible solutions while optimizing the
same first and second objective of the exact approach and a third objective to maximize the col-
lected waste. This is a valuable approach in developing countries where formal MSW system
usually competes with informal collection. Results show that PageRank can quickly generate
some feasible solutions for the GAP location problem.

Having different efficient and accurate methods for optimization is important for providing to
decision-makers a set of candidate solutions to analyze, taking into account the different trade-
offs between the desired criteria. Therefore, the main lines for future work are related to further
study efficient exact methods and heuristics for solving the GAP location problem, especially
considering larger scenarios. For this purpose, the use of metaheuristics is a promising line of
work to improve the applicability of the proposed model. Regarding exact methods, extend-
ing the capacity of computing a representative set of feasible multiobjective solutions within
reasonable computing times is important for validating the heuristics in reduced scenarios. Ad-
ditionally, the presented models can be extended to include some other relevant aspects of the
reality, such as considering a stochastic waste generation rate. Finally, another research line is
to consider a larger variety of scenarios from different cities, in which administrative, commer-
cial and residential divisions are clearer, in order to continue analyzing the performance of the
proposed methods..
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[11] J. Coutinho, L. Tralhão, and L. Alçada. A bi-objective modeling approach applied to an urban semi-desirable
facility location problem. European Journal of Operational Research, 223(1):203–213, 2012.

[12] S. Das and B. K. Bhattacharyya. Optimization of municipal solid waste collection and transportation routes. Waste
Management, 43:9–18, 2015. doi: 10.1016/j.wasman.2015.06.033.
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Appendix A. First stage results for classified waste

Tables A1–A3 report the results of the experimental evaluation for approximating the efficient
range the objectives in the classified waste scenarios of Montevideo and Bahı́a Blanca.
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