Publications
Publications
Journals:
- S. Nesmachnow, G. Colacurcio, D. Rossit, J. Toutouh, and F. Luna (2021) Optimizing household energy planning in Smart cities: a multiobjective approach. Revista Facultad de Ingeniería. Universidad de Antioquia (In press). doi: 10.17533/udea.redin.20200587
- I. Lebrusán and J. Toutouh (2021) Car restriction policies for better urban health: a low emission zone in Madrid, Spain. Air Quality, Atmosphere and Health, 14, 333–342. doi: 10.1007/s11869-020-00938-z
- A. Camero, J. Toutouh, and E. Alba (2020). Random error sampling-based recurrent neural network architecture optimization. Engineering Applications of Artificial Intelligence, Volume 96, November 2020.doi: 10.1016/j.engappai.2020.103946
- I Lebrusán and J. Toutouh (2020) Using smart city tools to evaluate the effectiveness of a low emissions zone in Spain: Madrid Central. Smart Cities. Special Issue: Mobility and IoT for the Smart Cities, 3(2), 456-478. doi: 10.3390/smartcities3020025
- U. O’Reilly, J. Toutouh, M. Pertierra, D. Prado-Sanchez, D. Garcia, A. Erb-Luogo, J. Kelly, and E Hemberg (2019). Adversarial Genetic Programming for Cyber Security: A Rising Application Domain Where GP Matters. Genetic Programming and Evolvable Machines, 21, 219–250. doi: 10.1007/s10710-020-09389-y
- D. G. Rossit, J. Toutouh, S. Nesmachnow. Exact and heuristic approach for multi-objective garbage accumulation points location in real scenarios. Waste Management Vol. 105,pp. 467-481, 2020. doi: 10.1016/j.wasman.2020.02.016.
- A. Camero, J. Toutouh, J. Ferrer, and E. Alba (2019). Waste generation prediction under uncertainty in smart cities through deep neuroevolution. Revista de Ingeniería, No.93, pp. 128-138, 2019. doi: 10.17533/udea.redin.20190736.
- J. Toutouh, D. G. Rossit, and S. Nesmachnow (2019). Soft computing methods for multiobjective location of garbage accumulation points in smart cities. Annals of Mathematics and Artificial Intelligence pp. 1-27. 2019. doi: 10.1007/s10472-019-09647-5.
- D. G. Rossit, S. Nesmachnow, and J. Toutouh (2019). A bi-objective integer programming model for locating garbage accumulation points: a case study. Revista de Ingeniería, No.93, pp. 70-81, 2019. doi: 10.17533/udea.redin.20190509.
- J. Toutouh, J. Arellano, and E. Alba (2018). BiPred: A Bilevel Evolutionary Algorithm for Prediction in Smart Mobility. Sensors, 18(12), 4123. doi: 10.3390/s18124123
Conferences:
- I. Lebrusán and J. Toutouh (2021) Smart City Tools to Evaluate Age-Healthy Environments. In: Nesmachnow S., Hernández Callejo L. (eds) Smart Cities. ICSC-CITIES 2020. Communications in Computer and Information Science, vol 1359. Springer, Cham.
- J. Toutouh (2021) Conditional Generative Adversarial Networks to Model Urban Outdoor Air Pollution. In: Nesmachnow S., Hernández Callejo L. (eds) Smart Cities. ICSC-CITIES 2020. Communications in Computer and Information Science, vol 1359. Springer, Cham.
- J. Toutouh, E. Hemberg, and U. O’Reilly (2020) Analyzing the Components of Distributed Coevolutionary GAN Training. In International Conference on Parallel Problem Solving from Nature, pp. 552-566, Springer, Cham.
- E. Pérez, S. Nesmachnow, J. Toutouh, E. Hemberg, and & U. O’Reily (2020). Parallel/distributed implementation of cellular training for generative adversarial neural networks. In 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) pp. 512-518. IEEE.
- J. Toutouh, E. Hemberg, and U. O’Reilly (2020) Re-purposing Heterogeneous Generative Ensembles with Evolutionary Computation In Genetic and Evolutionary Computation Conference (GECCO ’20), pages. 10, 2020. DOI: 10.1145/3377930.3390229
- E. Perez, S. Nesmachnow, J. Toutouh, E. Hemberg, and U. O’Reilly (2020). Parallel/distributed implementation of cellular training for generative adversarial neural networks. In 10th IEEE Workshop Parallel/Distributed Combinatorics and Optimization (PDCO 2020), pages 7, 2020.
- J. Toutouh, I. Lebrusan, and S. Nesmachnow (2020). Computational intelligence for evaluating the air quality in the center of Madrid, Spain. In International Conference in Optimization and Learning (OLA2020), pp. 115-127., 2020. https://doi.org/10.1007/978-3-030-41913-4_10
- G. Colacurcio, S. Nesmachnow, J. Toutouh, F. Luna, and D. Rossit (2019). Multiobjective household energy planning using evolutionary algorithms. In II Ibero-American Congress of Smart Cities (ICSC-CITIES 2019), pages 15, 2019. https://doi.org/10.1007/978-3-030-38889-8_21
- I. Lebrusan, J. Toutouh (2019). Assessing the environmental impact of car restrictions policies: Madrid Central case. In II Ibero-American Congress of Smart Cities (ICSC-CITIES 2019), pages 15, 2019. https://doi.org/10.1007/978-3-030-38889-8_2
- J. Toutouh, E. Hemberg, and U. O’Reilly (2019) Spatial Evolutionary Generative Adversarial Networks. In Genetic and Evolutionary Computation Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.3321860
Book chapters:
- J. Toutouh, E. Hemberg, U. O’Reilly. Data Dieting in GAN Training. H. Iba, N. Noman (Eds.), Deep Neural Evolution - Deep Learning with Evolutionary Computation, pages 19, Springer, 2020, Springer (In Press).
Posters:
- A System that Scales Robust Generative Adversarial Network Training presented in the MIT College of Computing poster session 2019.
- Mustangs: Robust Training of Generative Adversarial Networks by Fostering Diversity presented in the MIT-IBM Watson AI Lab networking and poster reception 2019.
- Coevolutionary GANs Training to Foster Diversity presented in the GANocracy: Democratizing GANs 2019.
Invited Talks:
- Webinar: Deep Neuroevolution applied to Generative Adversarial Networks organized by Spain AI Association, April 2020.
- Webinar: Navigating to Generative Adversarial Networks, a friendly introductio organized by Spain AI Association, April 2020.
- Webinar: Lipizzaner: Distributed Coevolution for Resilient Generative Adversarial Networks Training at Universidad de la Republica, Uruguay, April 2020.
- Webinar: Applying Generative Adversarial Networks to address Real World Problems: Smart Energy Forecasting at Universidad de la Republica, Uruguay, April 2020.
- Lipizzaner: Spatially distributed coevolution for robust and resilient GAN training at Schlumberger (an industrial company that wants to use our open source framework), December 2019.
- Spatial Coevolutionary Deep Neural Networks Training. Jamal Toutouh. Universidad de la Republica, Montevideo Uruguay, May 2019.
- An Artificial Coevolutionary Framework for Adversarial AI. Jamal Toutouh. Universidad de la Republica, Montevideo Uruguay, May 2019.